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Sometimes, when an elementary school 

teacher wants to help their students practice 

subtraction (or they don’t particularly feel 

like teaching) they will make their students 

play a game involving diffy boxes, squares 

with an integer on each of their corners. The 

rule to go from one box to the next is to place 

the difference between each pair of adjacent 

corners in the middle of the edge connecting 

them. 

Explicitly, if 𝑎 and 𝑏 are the values of 

the two corners, then the number |𝑎 − 𝑏|is 

placed on the edge. The numbers on  the 

edges now form a new box, so this process 

can be applied again and again until the boxes 

get too small to keep drawing. 

    If we use an imaginary pen that can draw 

infinitely thin lines, we can continue this 

process indefinitely. In Figure 1, the process 

has been continued until the box with a zero 

at each corner has been reached. From here, 

nothing interesting happens because each 

new box we draw will also be this box with 

only zeros. At this point, the students drawing 

these boxes are sure to grow bored and leave 

their desks to pursue more interesting uses of 

their time. This poses a problem for teachers 

- is there a box they can give their students 

that will never turn boring by eventually 

turning into the box with a zero at each corner? 

The reader may wish to attempt this problem 

before reading further. 

 

Boxes All the Way Down 

 

Let’s begin by defining some terms that will 

make talking about diffy boxes much easier. 

We call the result of doing one or more 

iterations on a diffy box a descendant of that 

diffy box. To be concise, we call the result of 

one iteration on a diffy box its child and the 

original box a parent of the new box. Each 

diffy box has exactly one child, but as we’ll 

see, any box has many possible parents. 

Furthermore, we say that a box 𝐴 generates 

a box 𝐵 if 𝐵 is a descendant of 𝐴. The zero 

box is the box with a zero on each corner, and 

order of a diffy box is the smallest integer 𝑛 

such that the result of 𝑛 interations on that 

box is the zero box. The box in Figure 1 has 

order 4, the zero box has order 0, any box that 

does not generate the zero box is defined to 

have infinite order. 

    We can now rephrase our original question: 

does every diffy box have finite order? Since 

all corners of a diffy box turn nonnegative 

after one iteration, we don’t need to consider 

diffy boxes with negative entries. This allows 

us to make a key observation: the largest 

value in a diffy box never increases. In any 

diffy box, the minimum possible value of a 

corner is 0, so the largest possible difference 

between two adjacent corners is equal to the 

largest value in the box. If the largest value of 

the descendants of a diffy box keeps 

decreasing, it must eventually reach 0. The 

only way that a diffy box does not generate 

the zero box is if the largest value of its 

descendants eventually remains constant. 

    Suppose we have a diffy box with 

maximum value 𝑀, and its maximum value 

has been constant over its 3 previous parents. 

Its parent must have had an 𝑀 and a 0 sharing 

an edge - with 𝑀 as its maximum value, there 

is no other way to have a difference of 

𝑀 between adjacent corners. The parent of 

that parent must have had a sequence of 

Figure 1: A diffy box. 



𝑀𝑀0  or 𝑀00  on consecutive corners. 

Continuing this back one more parent, we get 

a diffy box containing only 𝑀  and 0. This 

shows that if the descendants of a diffy box 

have a constant maximum value, then they 

must in fact have only 2 distinct values, 

𝑀 and 0. 

Suppose we replace all instances of 𝑀 in 

our diffy box with 1. Will this change its 

order? If 𝑀 is non-zero, then the answer is no, 

this simply replaces 𝑀 with 1 in each of our 

diffy box’s descendants. Therefore, for any 

diffy box, one of its descendants has the same 

order as a box containing only the values 1 

and 0. Such a diffy box is called a binary box.  

There are only a finite number of binary 

boxes, and they are illustrated in Figure 2. 

We can make a directed graph out of binary 

boxes by drawing an arrow from box 𝐴  to 

box 𝐵 when 𝐵 is the child of 𝐴. As we can 

see, all binary boxes generate the zero box. 

To the delight of students everywhere, their 

tortuous math class subtraction exercises will 

never keep them at their desks until the end 

of the period.  

 

To Cycle or not to Cycle? 

 

Squares have failed us, but perhaps if we 

venture into the world of polygons, we will 

find one with infinite order. A diffy 𝒏-gon is 

an 𝑛 -sided polygon with numbers on the 

corners, and to get its child we take the 

difference of adjacent numbers and put them 

on the edge joining them. 

Looking back on our treatment of 

diffy boxes, we see that the same arguments 

show that if our goal is to find an infinite 

order diffy 𝑛-gon, it suffices to only consider 

binary 𝒏-gons.  

    Drawing a graph for diffy triangles the 

same way we did for squares, we see that 

there is a non-zero diffy triangle that 

generates itself. This triangle can never reach 

the zero triangle, and so we’ve found what we 

were looking for! Pentagons also produce a 

cycle. Just how unlucky did we get by 

choosing to look at squares first? Exactly 

which integers 𝑛  give diffy 𝑛 -gons with 

infinite order?  

We’re looking for cyclic 𝒏 -gons, 

binary 𝑛-gons who generate themselves. We 

call a binary 𝑛-gon even if it contains an even 

number of ones, and odd if it contains an odd 

number of ones. Notice that only even 𝑛-gons 

have parents. This is because a 1 in a child 

corresponds to a pair 10 or 01 on the corners 

of its parent. If you start at a corner of an 𝑛-

gon and move over all the corners in a loop, 

you end at the same value with which you 

started, so you must have passed over an even 

number of these pairs. An extension of this 

argument shows that any even 𝑛-gon must 

have a parent. 

If 𝑛  is odd, we can always find an 

even parent for any even 𝑛 -gon. We have 

already shown that a parent must exist. If this 

parent is odd, then we can just swap all the 

1’s and 0’s in the parent. It will have the same 

child because the 01 pairs are all still in the 

same places, but now it will be even because 

the number of corners is odd! 

Figure 2:  The binary box graph. A filled circle is a 
1 and an empty circle is a 0.  

Figure 3: The graphs 
of diffy triangles and 

pentagons. 



    We’re now ready to search for cyclic 𝑛-

gons. Suppose 𝑛 is odd. If we start with some 

non-zero even 𝑛-gon, we can choose an even 

parent for it, and then an even grandparent, 

and so on. There are only a finite number of 

even 𝑛-gons, so at some point we must find a 

great-great-...-great-grandparent that is one 

of the polygons we’ve already seen, and so 

that polygon is cyclic!  

   Cyclic 𝑛-gons also exist when 𝑛 is even, as 

long as 𝑛  has an odd factor 𝑘 : one can be 

constructed by stitching several copies of a 

cyclic 𝑘-gon together. Showing that all diffy 

𝑛-gons reach the zero 𝑛-gon exactly when 

𝑛 is a power of 2 is a fun puzzle, and we 

encourage you to try it. 

 

Beyond Integers 

 

We’ve found a solution to our original 

problem by bending the rules a bit, but our 

answer isn’t entirely satisfying. We wanted a 

square box with infinite order, and we still 

haven’t found one! Instead of changing the 

number of sides of our shapes, let’s try 

changing the type of numbers that we choose. 

Maybe we’ll succeed if we allow rational or 

real numbers in our boxes.  

There are four useful operations we can do 

on diffy boxes that don’t affect their order. 

We can use (1) rotation and (2) reflection, to 

rearrange the corners of the box. We can also 

(3) add the same value to each corner; this 

doesn’t change the difference between 

adjacent corners, so the child of this modified 

box is unchanged. Lastly, we can (4) multiply 

all corners by a nonzero number; we saw this 

operation earlier when we replaced 𝑀 with 1 

to create a binary box. 

Using our operations, we can quickly see 

that allowing rational numbers isn’t useful. 

Multiplying all corners by the lowest 

common multiple of their denominators turns 

our box into an integer diffy box with the 

same order.  

    If we allow real numbers, it may seem at 

first glance that a box with “weird irrational 

numbers” is almost guaranteed to have 

infinite order. For example, surely the box 

with corners π, e, φ, and √2 never generates 

the zero box. In fact, this box has order 5. 

    We can discover many real-valued diffy 

boxes that reach the zero box by considering 

the ordering of the corners. Suppose we list 

the values of the corners from greatest to least 

and draw a line between two corners if they 

are next to each other on this list. Ignoring 

rotations and reflections, there are only 3 

possible pictures we can draw. Any square 

with a Z or X shape has an order less than 7 

(try showing this yourself) so we only need to 

consider U shapes to find infinite order boxes. 

   We can cut down on the space of possible 

squares by converting every square into a 

standard form. Suppose a diffy box has 

minimum value 𝑚 and maximum value 𝑀. If 
we subtract 𝑚 from each of the corners and 

then divide all corners by 𝑀 − 𝑚,  the new 

square will have a minimum of 0 and a 

maximum of 1, but still have the same order. 

After this transformation is applied, any U-

shaped box must have corners 1, 𝑦, 𝑥, and 0 

where 1 ≥  𝑦 ≥  𝑥 ≥  0 . Additionally, we 

can ensure that 𝑦 ≤  1 − 𝑥. This is because 

by multiplying Figure 6a by -1 and then 

adding 1 to all corners, we get Figure 6b, and 

Figure 4: Examples 
of the four 
operations. Figure 5: The 3  

possible shapes: Z, 
X, and U. 



if 𝑦 > 1 − 𝑥  in 6a, then 1 − 𝑥 <  1 − (1 −
𝑦) in 6b.  

 

Never Quite Reaching Zero 

 

From the graph of standard form boxes in 

Figure 7, we can see that the vast majority 

have finite order—in fact, if we choose a 

diffy box at random, there is a 100% chance 

it has finite order. There is, however, a small 

region where the boxes have a very high 

order, and it contains a single standard form 

box with infinite order. What on earth does 

this special infinite order box look like? 

The idea is to construct a box such 

that its child is the same as the original box 

with all its corners multiplied by a constant 𝑟. 

This way, every descendant will have all its 

corners multiplied by a power of 𝑟 , so no 

descendant is ever the zero box. Let’s start by 

fixing 1 as one of our corners. The corner 

adjacent to 1 must have value 1 − 𝑟 for their 

difference to be 𝑟. We then want the corner 

adjacent to that one to be (1 + 𝑟)(1 − 𝑟) so 

that their difference is 𝑟(1 − 𝑟).  We can 

continue this process until we wrap back 

around to 1 and find that 1 = (1 + 𝑟)3(1 −
𝑟). The resulting polynomial  has a real root, 

so we’ve made an infinite order box! This 

root is about 0.839. If we convert our infinite 

order box to standard form, we find that 𝑦 is 

about 0.4563 and 𝑥 is about 0.1607. 

 

Venturing Further 

 

We have explored integer diffy 𝑛-gons and 

real-valued diffy boxes, but there are many 

other directions that the idea of recursively 

taking differences between numbers can be 

taken.  

Looking at Figure 3, we can see that 

the length and number of different cycles is 

different depending on 𝑛. One question that 

we can ask about cycles is: Given an integer 

𝑛, what is the length of the longest cycle of a 

binary 𝑛-gon? The answer to this question is 

known when certain conditions are put on 𝑛, 

but it is unsolved in general. 

   We can also move up a dimension to 

polyhedra. On each iteration, place on the 

middle of each face the sum of the differences 

of the adjacent pairs of vertices on that face 

and connect two of these new numbers if their 

corresponding faces are adjacent. There is 

much fun to be had by messing around with 

diffy boxes, so enjoy yourself! 

Thanks to Yuval Wigderson for 

guiding the authors in their approach to this 

problem. 

Figure 7: Graph of standard form diffy boxes. The 
colour of each point (𝒙, 𝒚) represents the order of 
its corresponding box.  Brown, purple, and yellow 

indicate a low, medium, and high order 

respectively. 

Figure 6: At least one of 
these two boxes is in 

standard form. 

(a) (b) 


